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A NEW ADAPTIVE CLASSIFIER USING ITERATIVE FILTERIKNG

By Arland L. Actkinson

1.0 SUMMARY

To cope with signature variability, an algorithm has been defined which will
adaptively classify remotely sensed data in the visible and near-infrared band.
The signal is divided into a space-dependent component and a target-dependent
component. The target-dependent component is assumed fixed across the image for
each target type. The space-dependent cumponent is estimated iteratively by a
weighted, least-squares algorithm. Included in this study are the derivations of
the sensor model and the two-dimensional, estimation algorithm.

2.0 INTRODUCTION: THE PROBLEM

The classification of remotely sensed image data, using current techniques,
is severely hindered by the problem of signal variability. Signal variability
refers to the vast differences in signals radiated by a single crop in response
to different environmental conditions. Differences in soil type, local temperature,
water content of target, amount of haze and cloud cover, and many other factors can
have & decisive effect on the spectral response. In addition, changes in the angle
at which the target is observed affect the signal.

One suggestion for dealing with signal variability is to use an adaptive
classifier. An adaptive classifier alters the classification signatures in the
course of an analysis. This usually means that after a resolution element is
classified, the signature of the class is altered by averaging in the new observa-
tion. The averaging-in process may be weighted or unweighted. By using this tech-
nique, variations in signal can be partially modeled.

However, this aduaptive classifier method has some drawbacks.

a. Errors in classification may cause a class signature to be "captured."”
For example, as Class A elements are misclassified as Class B, Class B statistics
begin to look more and more like Cless A, making future misclassification even

more likely.

b. The weighting in the averaging is arbitrary; no criteria exist for this
assignment, and, presumably, the values must be determined by experience.

¢. This method presupposes very good initial estimates of the signatures.

d. This method restricts the taking of all ground truth to one part of the
image, namely, the first part to be classified.



e. Few techniques account for variastions due to angle of cobservation.

f. Observations of one class yield no information about the variations of
signals from other classes. Consequently, if a class is not homogeneously dis-
tributed throughout an image, the signature statistics may not reslistically re-
flect the environmental effects.

As a result of these disadveantages, & new model would seem desirable.
3.0 ANALYSIS®

Many of the difficulties of current classification methods are the results of
trying to estimate the current signature of each class. If the class signatures
could be considered as functions of some vector representing the enviromment, then
signature modeling could be handled with stetistical filters similarly to the
measurement modeling performed in Apollo navigation. This should eliminate the
previously mentioned problems of using the averaging technique.

A problem remains in implementing an environment estimation technique; namely,
in order to model the signal, the class of the targe‘- being observed must be known.
This means that, if n classes of targets are observed, then n signel types are
to be processed in estimating the environment vector.

An analogous situation in navigation would be the following: Suppose several
different types of measurements were being made (range, range rate, angles, etc.),
but for each measurement, only the value was known, not the type. Before the ob-
servation could bte used to update position and velocity, the measurement type must
be identified. This would be done by asking which type of measurement was most
reasonable, given the current estimate of position and velocity. The observation
would be assumed to be this most reasonable type and would then be incorporated.
This seme procedure could be used in processing remotely sensed data., Thus,

1. First, determine what a measurement of each type (example, each crop
clagsification) would look like, given the current estimate of the environment;
in other words, estimate *he signature of each class. If maximum likelihood is
the classification criterion, then the mean and covariance matrix for each class
should be determinea.

2. Then, classify the measurement by using whatever classzification criterion
has been decided on.

3. Finally, incorporate the observation to refine tne estimate of the environ-
ment state. The equations for this procedure are given in the following sections.
The classification criterion is maximum likelihocd.

BThis analysis is giten in reference 1.



L.0 SENSOR MODEL®

The model of a signal for virible end near visible light reflected from &
target can be defined as

S = LRT (1)

where

is the signal received

2

L is the irradiance incident on the target
R is the reflectance of the target
T is the transmittance of the atmosphere from the target to the gensor

This model does not consider effects of the type where incoming radiation is
absorbed by the target and radiated back at a different frequency. Visible light
is seldom radiated in this manner. Path radiance is also not considered. Path
radiance is the signal received by the sensor which is not from the target; for
example, rediation from other points on the ground or from the sun, which, be ause
of the aerosols in the atmosphere, is reflected into the sensor aperture. A..hough
this effect is not as significant as the terms in equation (1), it can be impor-
tant, and it is hoped that this effect will be added to the model at some future
date.

Reassociating the terms in equation (1) gives

s = R(LT)
or
Y=R'+C
where
Y=1n S
R'=1nR
C = 1n (LT)

The signal Y, as well a8 R' and C, ig a vector., Assume that the ith component
of C has the form

2 2
C,=a; +bU+ e,V +a.u?+ eV + £,V (2)

vwhere U and V are the spatial coordinates of the target point.

aThis sensor model is taken from reference 2.



Hence,

(R} +a,), by, 0, d), 0, F) 17

Y= - 1Y (3)
“Hv
(R} + an), bacd,e, il
uv
LV

The R' and a vectors are combined in equation (3) since neither is dependent on
the position of the target. This gives the final form of the signal model, namely,

Y=p+0 (L)
where
Y is the signal received
p=R'"4+a

2 2
ei = biU + ciV + diU + eiUV + fiV

remembering the assumption that

2 2
1n (L'r)i =a, +bU+cV+du?+elvs £,V

Equation (4) will be the form used in this algorithm. Note that p is spatially
independent; the difference between two p values is a function of target identity
alone. On the other hand, & is spatially dependent and target independent.

5.0 ESTIMATION ALGORITHM®

A digital image can be thought of as a matrix of numbers. For example, if
the 1, Jth position is to be represented as dark, the number at that positinon
would be small. The values of the matrix should be thougat of as otservetions of
a signal. 1If the signal is a linear function, or can be approximated as & ’inear
function, the terms of the function can be estimated by least squares. If the
image signal values are represented by the vector Y, then to say that the signal
is a linear function of the vector G means there exists a matrix X such that

Y = XG (5)

®This derivaticn was taken from reference 3.



If X 1is known, then the best estimate of G, in the least squares sense, is given
by

6 = (xTx)-1xTy (6)

A sequential estimator seems an obvious choice; however, the choice of the sequence
in which observations are processed is not obvious. The following ideas were used
in selecting ‘he sequence:

1. The data set used to generate G must be well defined.

2. The estimate of G and the computations used at an image point should be
used in estimating the next image points.

3. Because modeling errors are always present, and because these errors
probably increase as the distance from the estimation point increases, large jumps
in the sequence should be avoided.

For these reasons, these choices were made:

l. The estimate of G at the i,jth point will be made by using the observa-
tions to the left and above that point; that is, over the set

{x )1 cx<i,1<y <3} (1)

2. The estimate of G at (i-1, J) and at (i, j~1) will be used to find

G at (i, J). It turns out the estimate at (i-1, J~1) 1is also required.
5.1 Unweighted Estimation Algorithm

The set in expression (7) can be partitioned into

A={{xy) l1<x<i, 1<y« j}

B={(xy) | L sx<i,y=}

C={(xy) | x=u,1 ¢y <y}

D = {(i,3)}

Clearly, the union of A, B, C, and D is equal to the set in expression (7), and no
point in one cf the partition sets is in any of the other sets.

For each partition, there exists a s« of equations of the form of equation (1);
the number of equations in the set is equal to the number of points in the partition.
Hence,



YA = XAG

YB = XBG

(8)

Yc = XCG

YD = XDG

vhere the elements in one of the Yl are the signals in set L = A, B, C, or D
and the rows of the matrix Xl are the coefficients of the elements of G. Re-

calling equation (6), the best estimate of G, using all of the observations in
gets A, B, C, and D, is

rP-WT - -ﬁ-l r~

-
X
Xal 1% X3 b

-
Xl 1% ? 1 I R

o o)) o |
. J T

. T T T T, 1-[.T T T T
G = [xAxA + XgXp + XX, + xDxD_ [xAyA *+ Xg¥p + XY, + Xp¥p (9)

Both of the terms in equation (9) use quantities which will be inconvenient to de-
fine, namely, XB’ XC, YA, YB’ and Y.. Fortunately, equation (9) can be rewritten.

C
Using X,, to stand for X in equation (9) over the set AU B,
T T T
Xpe¥ap = Xp¥a * %5%p
Similarly,
T T T

Xackac = XaXp * XX

Likewise, GAB’ éAC’ and &A will denote the best estimates of G, using the obser-

vations in A UB, AUC, and A, respectively. Hence, the inverse term in
equation (9) becomes



- -1
[éixA + xgxB + xgxC + ng;] [(xAxA + xnxn) + (x X, + xcxc) - xzxA + xgxn]
-1
T T T T
* [xABxAB * Xac¥ac = Xfa xDxD]

The second factor in equation (9) also neeus to be rewritten. Recall that

T, - T
XpXaGp = X3¥y

T. 2 T T
Xap*apCas = *ap'ar = *a¥a * %s¥p

T, & T i m
Xac¥acCac = Xac¥ac = ¥a¥a * Xc¥e

Hence, the second term becomes

+ XBY + x Y+ XDY = (x Y, Xy r )+ (x Y, + x Yol - X YA + xgyD

T oA T - T2 LT
= Xag*as%a * Xac¥acCac ~ ¥a¥ala * Xp¥p
®

Substituting these rewritten terms into equation (9) give

-1
T T T T T, - T, - T4 T
G [XABXAB Xac*ac = *a¥a * %%p [XABXABGAB * Xpc¥actac ~ Xa¥aln * xDYDJ
(10)

-

Equation (10) is the form that will be used in determining G, assuming Y = XG,
where X 1is some matrix and the equations in the system are to be equally weighted.

5.2 Weighted Estimation Algorithm

. In equation (10) each observation has exactly the same importance in calculating
G. This is reascnable if all the observations are equally good. However, more dis-
tant pixels would be expected to be less useful than closer pixels. Consequently,
distant measurements should be downweighted.

Suppose G is to be estimated at some point Pn = (Un,Vn) in the image.

Select a number r such that O < r < 1. If d(i,n) is the distance, by whatever
definition, between image points P, and Pn, then the observation at Pi may be

i
weighted by rd(i’n). Ueing this weighting, the greater the distance of an obser-

vation from Pn, the smaller the weight, until finally the very distant observations

are, effectively, thrown away.



The remaining task is to define the distance measure d(i,n). Suppose
P = (Ul’vl) and P, = (UQ,VZ) are two points in the image. Define

a(1,2) = [u1 - u2| + |v1 - v2| (11)
The convenience of this distance measure will become apparent.
Equation (5), at point Pn = (Un’vn)’ now becomes
w(un,vn)y = WU _,V_)XG (12)
where
rd(npl) 0
Wy v ) = . (13)
0 rd(n,n)

Here W(Un,Vn) is the diagonal matrix with the general term rd(n’i).

The best estimate of G in equation (12) is

3 T Y2y 1=1yT 2

G =[x w(un,vn) x]-x w(un,vn) Y
Notice that each diagonal term of W(U,V) changes as the G estimation point
changes. Suppose G 1is estimated at Pn. Then the ith diagonal term of
W(Un,Vn) is rd(i’n). rd(l’n) is the weight of the ith obser-
vation, when estimating G at point Pn' Suppose G is now to be estimated at

In other words,

another point Q which is a distance of d{i,n) +1 from P The the appropriate

.
welght for the ith observation in computing G at point Q is rd(i’n)+1. Hence,

the ith diagonal element of the weighting matrix at Q is r times the ith
diagonal element of the weighting matrix at Pn.

Suppose G 1is to be estimated at (U,V)., Further, suppose G has been
estimated at (U,V-1), (U-1,V), and (U-1,V-1), which means that weighting matrices
have been defined at these points also. Use the partitioning described in the un-
weighted case,

A= {(xy) | 1e£x<U, 1<y<V}
B= {(x,y) | 1 s<x<U,y=V}
Cs= {(x,y) | X®=u, 1 <y<V}
D= {(U,v)}



The estimates of G at (U-1, v-1), (U-1, V), and (U, V-1), respectively, are
n ael

T T
LXAW%U-I, v-1)%a| X0y, vo1)ta

G at (U-1, v-1)

. a=1
- T T
é - 2
- [ T 1’ T
G et (U, v-1) = *ac¥tu, v-1*ac]  *ac¥(u, v-1)¥ac (14)

where YA, YAB’ and YAC are the observations from the sets A, AUB, and A UC,

respectively.

Denote by R the matrix

where r Is the weighting scalar mentioned previously. The size of R will be
implicitly 4efined by the equation in which it appears.

Recall that W and W have the weights for the

(u-1, v-1)° -1, v)° (u, v-1)

elements in Y,, Y ,,, and Y,., respectively. Partitioning W, ) and
w(U’ v-1) gives
? w! o
(u-1, V) |
o, T |m = m T
0 : g1, v)(B)
anc
M, v : 0
ARSI e
0 ! W(U, V-l)(C)
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where W ) v)(A) and W, o v)(B) are the diegonal weighting matrices for
L i
Y, and Yp, respectively, defined at (U-1, V), and Wiy, va ‘A) end
, V-
w(u’ V-l)(C) are the diagonal weighting matrices for YA and Yc, respectively,

defined at (U, V-1).
Note that the distance from (U-1, V-1) to (U, V) is 2. Furthermore, the

distance from (U, V) to any point in A is 2 greater than the distance d(i, n)
fram (U-1, V-1) to that point in A. Hence, the weight for an observation at

g in A is rzrd(i’n). Notice that rd(i’ n)
term of Wy, v-1){A) = W1 y.y)+ This means

any point P is the general disgonal

(v, V)(A) - sz(u-1, v-1)(®) (15)

Similarly, because the distance from (U, V) to a point Pi in AUB or AVUC

is 1 greater than the distance from (U-l, V) or (U, V-1), respectively, to P

i
Fu, ) = Ry, gy B = Bl gy () )

W, vy B =Ry ) (16
Wiy, v;'0) = By, vyi©) J

Now the machinery is gathered for defining G at (U, V). Recall that the best

estimate of G et (U, V) is
r -~ o)1
ﬂk%u, v)(a) 0 Xy
R w2 (B) X
(u, v) c
0 “%u, v)(D) Xy
L L. -~ b AJ
qu’ Y 0 Y,
[x{. x%, xg, xg] Wey, vy (B) 2 p
w(u. v)(C) Y
0 wfu‘ v)(n) Y,
- - b o




T
y [XA"%U. Wy ¢ ¥y gy (B Xy (O

T2

+ Xp¥ty, v)(D)XQ] [%f"fu. V)BT« GRE, )(BIY,

+ xﬁufu (e, + x%uiu’ v)(D)Yé] (17)

Recall that

T
xABHiU, v)(A U B)x = wa(U v)(A)X + xB w, v)(n)xB

= Xy IR, ) (MK, + XGIR%E, | (B) 1K

= R2x "iu 1, vRx, + R? wa(U 1, v)(B)Xg
Similarly,
xicwfu’ nlauex,  =x [azw(U vop)(AIx, + x§[a2w%u’ v-1)(C)Ix,
= R2X w(u V- l)(A)x + R? xc (v, v- n{Cx,
Also,
x:wfu’ V)X, = X TR 1, vV X,

- BT v WK
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Nov the inverse factor of equation (17) can be rewritten as
X gy (X, + Xgu (BIX, + X3, \(C)X, + X3, (D)
AWy, vy A0X, ¢ Xgudy gy (BIXG # XWE, oy (CXg ¢ XpWTy ) (D)X

T T
= ,RAWG ) ) (R0, + KRWE, ) ) (B)Xy

T 2

+ X, R2u2 )(A)X + xcnzu )(c)xc

(u, v-1 (v, va1

- X3 R “(u 1, v)(A)x + xn“(u v)(n)xn
= R [xTw (A)x + X (B)x ]
(u-1, v) BY u , V) B

T 1
+ RZ[wa(U V- l)(A)A + X “(u Ve l)(c)xc]

Ty
- X, RY "(u 1, V- 1)(A)x + xD (v, V)(D)XD

T

T
= Rz[x Mlu-1, v (AU BXg + Xy WG, o)A UC)XAC]

- R“[x Wlu-1, V-l)(A)xA] » XMy vy (D%, (18)

Now, the ..rst factor of equation (17) is in terms of matrices that were defined
at (U, v-1), (U=1, V), or (U-1l, V-1) plus the new term defined at (U, V). This
is the form of the inverse term which will be used.

All that remains is to rewrite the second factor in equation (17). We know

T 2 T Tl
U1, v-1)(A)Y, = [XAV%U-I, V-l)(A)xA]GA

T 2 I [ g T |s
Xap¥{y-1, v){A VB, [xuw(u_l' vy v rs)x‘um]cAB

T .2 T {2
X, AC"{y, v-1)(A Y C)Yye [xAc"(u, v-1){A U C)XAC] AC

vwhere 6A' 6AB’ and G are the best estimates of G over A, AUB, and AUC

AC
at (U-1, v-1), (U, v-1), and {U-1, V), respectively.
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(Adjugting the first equation to change the weighting matrix reference point
to (U, V),

T ~
RGUT, ) yog) W)Y, = R“[x{ufu_l’ v-1)(“xA]°A

T .
xA[n“u%U_l’ V—l)(A)]YA = n“[x:u%u_l’ V-l)(A)xA]GA

T y -
wafu, v)(A)YA = R"[wa%u_l' v_1)(11)xA]<:A

Similarly,

T = R2¥Y w2 3
X¥fy, v)(A U B)Y,p = REGWE, | y) (A UBIX,Gy

and

T .2 24T 2
xAcw(U’ v)(A u c)vAc = RX, W

(u, v_l)(A v c)xmc;‘,‘C

The seccnd factor in (13) can now be rewritten

T T T,,2 T..2
XWty, vB)Y, + XgWiy, v)(B)Yp * Koy (G0 + Xp¥iy, v)(P)Yp

T T, \
[wa%U, R, + XGWE, v)(B'YBI

T T
+ [wa(ZU’ V)(A)YA + xc"‘%u, V)(C)YC]

T T
- Xy, vy (A)Y, + Xpidy ()Y
2 xT 2 (A U B)Y
AB (U, V) AB
T T
* XMy, A YO, - XyWey, vy A,

T2
+ wa(U’ v)(D)YD

24T A T 2 A
R ‘XABw%U-l, (AU BIX G p + X WTy, yo) (B U O Gye

T 2 T



b

Substituting (18) and (19) into (17), the best estimate of G et (U, V), in
the weighted least squares sense, is

- T T
G = ‘Rzlxan"?u-l, (A VBN, + XMy (A UCIE, ]" "“[‘2"&.1. v-1)(“)xAI

-1 Uy -
* Xy, v)mxn| ‘Rzlxn"%u-h (A U By ¢ BiEy (AU C)xaccnc!

- “"[x:"iu-l, v—1)(”xaéal * ¥, v)(D)xn’

(20)
6.0 IMPLEMENTATION

To complete the definition of the adaptive classifier, the method of handling
the trainipng data will be defined.

Finally, the procedure for classification
described in section 3.0 will be described.

6.1 Training Data Calculations

First, the signatures of the classificatiop sets must be estimated.

This
should be accomplished by evaluating the equations
m
Py
) -1
o, | (%) By (21)
b
c
d
e
L

where

pL = the log of the refiectance of the ith class plus a

b, ¢, d, @, £ = the coefficients of 6

Y = the vector of the observations

H = the matrix over the training data such that the jth line is
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2 2
[IJ’UJ'VJ’UJ'UJVJ’VJ]
whuve

IJ & 4 row vector with all zeroes except for & one in the ith location,

indicating the jth observation came from the ith class

(UJ’VJ) = the position, in U,V coordinates, of the jth observation

Equations (5) and (6) show that equation (21) is a solution of

The solution of eg.ation (21) will yield an estimate of the class reflectances
and the global estimate of the enviromment function 0. In order to use a maximum
likelihood classifier, as described, for example, in reference L4, the covariance

matrices of tne classes ure also needed. These may be estimated by

|T
no=E |(Y -8) - oillty -8) - oil

where

(* = the covariance matrix of the ith class

-

Ei[*] = the expected value of * taken over the ith class

1 = the log ! the received signal
¢ = the estimate of the environment; i.e., bU + ¢V 4 dUc + cuv + fV?

-
e

: the log of the average reflectance of the ith class plus a

Finally, the best locel estimate of the environment vector must be made at

point (1,1), since that is the point where classification will te. The best local

estimate at (1,1) will be a solution of
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L}
J

, 2 2
LA “1[91’1'"1’V1"1'"1V1'V1] 1 (22)

v
[
a
e
£
. J

where

(u1 +V, - 2)
W, = the weight of the ith observation (equal to 8 » 0<8<1)

Yi = the ith observation (scelar) for the channel being considered
pi = the logarithm of the reflectance of the obJect of the ith observation plus a
(ui,vi) = the coordinates of the ith observation

[a,...,f]T = the vector of coefficients of the log environment polynomieal;
that i., 6 = a + bU + cV + dU2 + eUV + V2

The solution of equation (22) is

Aa |
b
-1
¢l= (kW2K) KTw2y (23)
d
e
LT
where
0
W BU+V-2
0 .
and

2
K= pi’l’Ui’vi’Ui'Uivi‘vi
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A couple of comments are necessary here. First, in general, r < 8 , where r
is defined in section $.2. This means that in estimating the environment using
training deta, the old measurements are less downweighted than they would be in
the normal, weighted estimation procedure. This reflects the greater security
resulting from knowing the classification of the data. Second, for the local esti-
mates of the environment, a constant term will be used in the polynomial. The
globally defined polynomial also has a constent term, but the term is combined with

the reflectance.
6.2 Test Data Calculations
The calculations to be performed on the data to be classified are
1. Estimate the environment state from prior observations.
2. Classify the observation.
3. Update the estimate of the environment.
The equations to perform these functions are as follows:

Suppose the observation at coordinates (U, V) is to be processed. Denote
by G(U V) the best estimate of the environment state vector at (U, V). Then,
]

G +G
- (U-1, V) (u, V-1
S, ) = 2 1) (24)

The minus sign indicates that the observation at (U, V) has not yet been used in
the estimate of G.

The estimate 521 1) is determined from the training data only. In the
* -~
event that U =1, then G

~

= . v h
W, v) G(U, v-1) For the case where = 1, then

GEU, v) = Sy, )"

Now that G has been estimated, 6 can be calculated where

+a = [1,U,V,02,uv,v2)67 (25)
8 +a [”"’](U,V)
Then the number p may be estimated by

p =Y - @ (26)

where Y 1is the log of the observed signal.
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Finally, the likelihood of each class must be computed.
L(ile) = -1a(zy) - (p = 04)EHp ~ pg) (21)

<“hoere

L(i[p) = the likelihood of the observation p belonging to the ith class
oi = the mean of the ith class

Xi = the covariance matrix of the ith class

The observation should be classified into the class i such that
L(ifp) > L(J]e), 1#3

In the case where L{ilp) = L(j|o), some arbitrary choice between i and J must
be made.

Now that the classification has been established, the observation may be used
to update the estimate of G, This is done by means of equation (20). A descriptive
flow chart of the estimation algorithm is given in figure 1, Details are given
in Tigure 2,

7.0 CONCLUSION

T> ¢.re with signature -rariability, an algorithm has been defined which will
auapt ively classify remotely sensed data in the visible and near-infrared band.
e ecignal is diviied int~ a space-dependent component and a target-dependent
+ .z nen*, The turget-iuviendent component is assumed fixed across the image for
e:'~ target type. The space-~iependent component is estimated iteratively by a
we.zlitet, ieast-squares algorithm. Included in the study was the derivation of
tue sensor model and two-dimenuicnal, estimaticn algorithm,
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| USING ONLY TRAINING SETS |

*(21) FIND A GLOBAL ESTIMATE FOR G
AND EACH Ri FOR EACH CHANNEL

!

COMPUTE THE COYARIANCE MATRIX OF
R = Y-c FOR EACH CLASS

l

*
(23) FIND BEST ESTIMATE OF G AT POINT (1,1)

l

USING ALL OBSERVATIONS

!

¥ (20)  pmemgee| FIND INITIAL VALUE OF G AT NEW PIXEL
AND CALCULATE o = XG

1

*(27) COMPUTE R OBSERVED EQUAL TO Y-
CLASSIFY R OBSERVED BY MAXIMUM
LIKELTHOOD RULE

'

i&(zo) IF R OBSERVED IS CLASSIFIED AS IN CLASS i,
COMPUTE - OBSERVED AS EQUAL TO Y-Ri. USE
" OBSERVED TO FIND NEW ESTIMATE OF G

!

GO TO NEW POINT

% NUMBERS IN PARENTHESE REFER
TO EQUATIONS IN THE TEXT

Figure 1,- Descriptive flow chart of estimation algorithm.
Page 1 of 1
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USING ONLY
TRAINING SETS

'

[—— = FOR EACH CHANNEL >
| !

*(@21) | ""}'
| :
G = o ¢ ) = (HTH)-] HTV
L]
-——
i
|
I ¢ = }v-01-¢] fiv-01-o] T}
' N
B D e

NOTE: THE SUM IS OVER ALL
OBSERVATIONS OF THE CLASS
IN THE TRAINING SETS AND N
IS THE NUMBER OF OBSERVATIONS

= - FOR EACH CHANNEL >

* (o | ¥
b
i (TR 1 S L SR
e
f
USING ALL TEST DATA A

%k NUMBERS IN PARENTHESLS REFER
TO EQUATIONS IN THE TEXT

Page 1 of 3
Figure 2.- Detailed flow chart of estimation algorithm.
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- ——

! ,< FOR_EACH ELEMENT
) IN THAT LINE
| 7=

I " (1,1) S

BEEN DEFINED

| AS ABOVE
|

| [ Bluav) * S(u,v-1) el
|
| -

| | (u,v) = G(u-1,v) —
|
| & . 6(y-1,v)* S(u,v-1) |

| | (u,v) 2
| -

=
* |
(2a)

|
|
|

| |
|
|

| |
|
|

| |
| 4 NUMBERS IN PARENTHESES REFER TO
| TO EQUATIONS IN THE TEXT

Page 2 of 3

Figure 2.- Continued.



0= |1. u, v, 2, w, V2 é(’u.v.)l
o = ¥-0, FOR ALL CHANNELS

1]

CLASSIFY BY FINDING THE CLASS i
SUCH THAT L(i,0)>L(J.0)s 1 #

WHERE
L) = ofZ] - )T T 660

!

A - 2 T
& o {0 W e, vytauedmgg + Xy Wy (e, ]
af, 1.2 .
- R [kA Wy, V-l)(A)xA] * XDT“Z(U. V)(D)XD} !

of, T.2 ) T .
{R [kAB Wy, v)(AUBXygGpg + Xoe “z(u. V-I)(AUC)XACGAé]

lr - AL GES GNS GNP W CEm GES EED GES CED GED CEb -

af, 1.2 .
- R [XA Wiu-1, v-1)(A) xAéA] * xDT"’Z(u, n{D ot

% NUMBERS IN PARENTHESES REFER
TO EQUATIONS IN THE TEXT

Figure 2.- Concluded. Page 3 of 3
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